
PHYSICAL REVIEW E, VOLUME 65, 046620
Patterns arising from the interaction between scalar and vectorial instabilities in two-photon
resonant Kerr cavities
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We study pattern formation associated with the polarization degree of freedom of the electric field amplitude
in a mean field model describing a nonlinear Kerr medium close to a two-photon resonance, placed inside a

ring cavity with flat mirrors and driven by a coherentx̂-polarized plane-wave field. In the self-focusing case,
for negative detunings the pattern arises naturally from a codimension two bifurcation. For a critical value of
the field intensity there are two wave numbers that become unstable simultaneously, corresponding to two
Turing-like instabilities. Considered alone, one of the instabilities would originate a linearly polarized hexago-
nal pattern whereas the other instability is of pure vectorial origin and would give rise to an elliptically
polarized stripe pattern. We show that the competition between the two wave numbers can originate different
structures, the detuning being a natural selection parameter.
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I. INTRODUCTION

Spatiotemporal patterns in the transverse direction of
optical field have now been widely studied theoretically a
experimentally@1#. Studies of optical pattern formation sha
a number of aspects and techniques with general inves
tions of pattern formation in other physical systems@2#, but
they also have specific features such as the role of light
fraction and the vectorial degree of freedom associated w
the polarization of the light electric field amplitude. A prot
type simple model that has been very useful for the und
standing of pattern formation in nonlinear optical cavities
a mean field model describing a Kerr medium in a cav
with flat mirrors and driven by a coherent plane-wave fie
@3,4#. This model was extended to take into account the
larization degrees of freedom in Refs.@5–7#. Some of the
basic polarization mechanisms of pattern formation in alk
vapors or other nonlinear materials can be understood
terms of this simple model despite the fact that the mode
too simple to give a complete description of alkali vapo
Furthermore, the relative simplicity of the model in Ref.@5#
makes it worthwhile to study it in depth as a general pro
type model for the basic understanding of vectorial patte
A first study was undertaken in Ref.@5# for the case of lin-
early polarized driving field and the positive cavity detunin
A more detailed study in which the case of elliptically pola
ized driving field is also considered has been presente
Ref. @7#.

Here we study vectorial pattern formation in a Kerr m
dium close to a two-photon resonance placed inside a

*Electronic address: http://www.imedea.uib.es/PhysDept/
†Mailing address: Center for Nonlinear Phenomena and Com

Systems, Universite´ Libre de Bruxelles, Campus Plaine, Blv. d
Triomphe B.P 231, 1050 Bruxelles, Belgium.
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cavity. Two-photon processes have been studied in prop
tion in nonlinear Kerr media without any cavity as a way
realize optical phase conjugation mirrors. An ideal pha
conjugate mirror should generate an output field such that
amplitude of the field, its propagation vector, and its pol
ization unit vector are the complex conjugates of the cor
sponding magnitudes in the input field. The first two prop
ties can be achieved easily using, for example, four-w
mixing processes@8#. Usually the third property can be ob
tained only when the pump waves are circularly polariz
and counterrotating. In order to find a system that verifies
three properties~vector phase conjugation! for an arbitrarily
polarized input field it is required to make use of the spec
tensor properties of two-photon atomic transitions in deg
erate four-wave mixing processes@9,10#. More precisely,
vector phase conjugation can be achieved if the two lev
coupled by the two-photon transition have equal angular m
mentaJ with J50 or J51/2. In this situation thex1122 com-
ponent of the susceptibility tensor vanishes. Intuitively,
DJ50, the atom does not change its angular moment
either by absorbing two pump photons or by emitting a pro
and a conjugate photon so that the conjugate photon mus
emitted with angular momentum equal and opposite to t
of the probe photon. A detailed calculation@9# shows that
indeed this is true for the cases indicated before. We sho
stress that the polarization properties of two-photon-reson
degenerate four-wave mixing processes are different fr
those of most other degenerate four-wave mixing proces
In the two-photon case the underlying physical mechanism
scattering of the probe field from a spatially uniform temp
rally varying coherence induced by the two pump wav
whereas in the other cases it is scattering from a spati
varying refractive-index distribution induced by the interfe
ence between the pump and the probe beams. Experim
tally, vector phase conjugation was first observed using
3S1/2→6S1/2 two-photon transition in sodium vapor@11#.

x
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Here, instead of a cavityless Kerr medium, we are con
ering a Kerr mediuminsidea ring cavity. The same kind o
Kerr medium is used, namely, the medium has a suscept
ity tensor such thatx112250, close to a two-photon reso
nance. We will show that in this situation, when the cavity
illuminated with linearly polarized input and with negativ
detuning a new interesting situation appears: a codimen
two bifurcation in which two stationary Turing-like instabil
ties occur simultaneously. The first instability, if the oth
were not present, would originate a hexagonal pattern th
polarized linearly in the same direction as the input field. T
second instability is of pure vectorial origin and if the fir
instability were not present it would give rise to an ellip
cally polarized stripe pattern. Here we study the interp
between the two instabilities. The codimension two bifurc
tion appears here in a natural way associated to the t
photon-resonant four-wave mixing nonlinearities rather th
as the result of the finetuning of two system parameters a
usually the case. The intensity of the pump field is the sin
control parameter to be tuned to change the distance to
instabilities. Furthermore, the system still has another ea
accessible control parameter, the detuning, which allows
system to form different patterns while remaining at t
same distance from the codimension two instability thre
old. In particular, we show how the detuning can be used
a tuning parameter to select the pattern.

The outline of this paper is as follows. In Sec. II w
describe the model we are considering, its spatially homo
neous solution, and the stability analysis of this solution.
Sec. III, using a weakly nonlinear analysis, we derive
evolution equation for the patterns arising from the intera
ing instabilities. From these equations, the selected patt
for different values of the detuning are analyzed in Sec.
In Sec. V we describe the results from numerical simulatio
of the model and finally in Sec. VI we give some concludi
remarks.

II. DESCRIPTION OF THE MODEL, REFERENCE
STEADY STATES, AND STABILITY ANALYSIS

The system we consider is a ring cavity filled with a
isotropic Kerr medium. The cavity is driven by an externax̂
polarized input field. The situation in which the polarizatio
degree of freedom of the electromagnetic field is frozen w
first considered by Lugiato and Lefever@3,4#. Geddeset al.
@5# generalized the model of Ref.@3# to allow for the vector
nature of the field. Their description of this system is giv
by a pair of coupled equations for the evolution of the tw
circularly polarized components of the field envelopeE1 and
E2 , defined by

E65
1

A2
~Ex6 iEy!.

For an isotropic medium, the equations are

]E6

]t
52~11 ihu!E61 ia¹2E61E01 ih@AuE6u2

1~A1B!uE7u2#E6 , ~1!
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whereE0 represents the components of the input field~the
right and left circularly polarized components are equal sin
we considerx̂ linearly polarized input!, h511(21) indi-
cates self-focusing~self-defocusing!, u is the cavity detun-
ing, a represents the strength of diffraction and¹2 is the
transverse Laplacian. The parametersA andB are related to
the nonlinear susceptibility tensor components in the follo
ing way.A56x1122andB56x1221 @8#. Also, for an isotropic
medium we haveA1B/251. As discussed in the introduc
tion, here we are considering two-photon transitions betw
levels with equal angular momentaJ whereJ50 or J51/2,
so thatx112250 (A50 andB52). Also as we consider the
self-focusing situation, in what follows we takeh511. The
intensity of the input field isI 052uE0u2.

The steady state homogeneous solutions of Eq.~1! are
reference states from which transverse patterns emerg
they become unstable. There is a symmetric (Es15Es2

5Es) and two asymmetric (Es1ÞEs2) homogeneous solu
tions @7#. The symmetric solution corresponds to linearly p
larized output light, while the asymmetric solutions to elli
tically polarized output. Increasing the input field, th
asymmetric solutions appear only for values ofI 0 larger than
the instability threshold for pattern formation@7#, so here we
will only consider the symmetric solution@12#,

I 0/25I s@11~2I s2u!2#, ~2!

which gives an implicit formula forI s5uEsu2. As is well
known, Eq.~2! implies bistability foru.A3. However, here
we will always consider negative detunings that are far aw
from the bistable regime. An example of the symmetric s
lution for linearly polarized input is given in the inset o
Fig. 1.

Basic features of the stability of the steady state homo
neous symmetric solution can be analyzed by considering
evolution equations for perturbationsc6 defined by

FIG. 1. Marginal stability curves for a linearly polarized inp
field corresponding to the symmetric solution. In the inset the sy
metric steady state homogeneous solution is shown, as a functio
the input field intensity, for linearly polarized light. Value of th
detuningu521. The parameters used in Eq.~1! in order to get the
codimension two situation areh51, a51, A50, andB52. The
quantities plotted in all the figures are dimensionless.
0-2
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E65Es~11c6!. ~3!

From Eqs.~1! and ~3! we find

] tc652@11 i ~u22I s!2 ia¹2#c6

1 i I s2~c71c7* 1uc7u2!~11c6!. ~4!

It is convenient to make a change of variables to the
lowing basis@5#:

S5~s1 ,s2 ,s3 ,s4!T5@Re~c11c2!,

Im~c11c2!, Re~c12c2!, Im~c12c2!] T, ~5!

whereT stands for transpose. In this basis, which emphas
the role of symmetric (c15c2) and antisymmetric (c15
2c2) modes, Eq.~4! may be written as

] tS5LS1N2~SuS!1N3~SuSuS!, ~6!

where the linear matrixL is a matrix with 232 blocks in
which the symmetric (s1 , s2) and antisymmetric (s3 , s4)
modes are decoupled,

L5S L1 0

0 L2
D . ~7!

As a consequence, the linear instabilities lead to the gro
of either a symmetric or an antisymmetric mode. In Four
space we have

L15S 21 ~u22I s1ak2!

2~u26I s1ak2! 21 D ~8!

and

L25S 21 ~u22I s1ak2!

2~u12I s1ak2! 21 D , ~9!

wherek[ukW u.
Instability occurs if at least one of the eigenvaluesl of L1

andL2 has a positive real part. In Fourier space, these eig
values are solutions of the characteristic equations:

~l111!21~u1ak226I s!~u1ak222I s!50,

~l211!21~u1ak212I s!~u1ak222I s!50. ~10!

For u,0, we have

l165216A4I s
22a2~k22ks

2!2,

l265216A4I s
22a2~k22ka

2!2, ~11!

where aks
254I s1uuu and aka

25uuu. For both eigenvalues
the instability occurs atI s51/2.

The nonlinearities in Eq.~6! include quadraticN2(SuS)
and cubic termsN3(SuSuS):
04662
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N2~SuS!5I sS 2s3s422s1s2

3s1s11s2s22s3s31s4s4

2s2s322s1s4

22s1s322s2s4

D ~12!

and

N3~SuSuS!

5
I s

2 S 2s1s3s42s2~s1s11s2s22s3s31s4s4!

s1~s1s11s2s21s3s32s4s4!22s2s3s4

2s1s2s32s4~s1s12s2s21s3s31s4s4!

s3~2s1s11s2s21s3s31s4s4!22s1s2s4

D .

~13!

The structure of these terms also gives some general in
mation on the nature of the instabilities. In particular, if t
quadratic nonlinearityN2(SuS) does not vanish, one expec
the formation of a hexagonal pattern instead of stripes.
explained in Ref.@7#, when the symmetric mode become
unstable an hexagonal pattern is expected whereas whe
antisymmetric mode becomes unstable there are no rele
quadratic couplings so a stripe pattern is formed.

In Fig. 1 we plot marginal stability curves foru521 as a
function ofak2. The shape of the marginal stability curves
in fact, the same for any value of the detuningu. This is
because the eigenvaluesl i given by Eq. ~11! depend on
ak22uuu, so a change in the value ofu is equivalent to a
displacement of the origin ofak2 by the same amount. Th
origin moves to the right if the detuningu is increased.

The instability region I comes from the eigenvaluel11 so
the critical modes are symmetric and of zero frequency
subcritical hexagonal pattern is expected via a transcrit
bifurcation. If this were the only instability, it would corre
spond to the case discussed in Ref.@4#, in which the polar-
ization degree of freedom is not taken into account. T
instability leads to an x̂-polarized pattern while the
ŷ-polarized component of the field continues to be zero.

The instability region II comes from the eigenvaluel21

so the critical modes are antisymmetric and of zero f
quency. A stripe pattern is expected@5#. Given the antisym-
metric nature of the unstable mode, thex̂-polarized compo-
nent of the field is stable and remains almost homogene
while the stripe pattern appears in theŷ-polarized compo-
nent, which has zero value below the instability. Overall, t
electric field displays an elliptically polarized spatial stru
ture. We remark that such an instability is of pure vector
nature with no analog when the polarization degree of fr
dom is frozen.

In the case considered here,u<0, starting from the lin-
early polarized homogeneous solution, as the input field
increased, the system crosses the two instability thresh
simultaneously. This is a codimension two bifurcation i
volving two sets of stationary modes. The critical mod
associated to region I are symmetric and have a critical w
numberks , while the critical modes associated to region
0-3
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are antisymmetric and have a critical wave numberka . The
ratio ka /ks can be changed easily varying the value ofu.

III. WEAKLY NONLINEAR ANALYSIS FOR
INTERACTING TURING INSTABILITIES

The eigenmodes of the linear evolution matrixL are, in
Fourier space @Ŝ1(kW ),0,0,0#T, @0,Ŝ2(kW ),0,0#T,

@0,0,Â1(kW ),0#T, and@0,0,0,Â2(kW )#T, with

Ŝ6~kW !5ŝ1~kW !6bs~k!ŝ2~kW !,

Â6~kW !5ŝ3~kW !7ba~k!ŝ4~kW !, ~14!

where Û(kW )5F@U#(kW ) denotes the Fourier transform o
U(rW). Furthermore

b j~k!5
2I s1a~k22kj

2!

A4I s
22a2~k22kj

2!2
, ~15!

where indexj stands fors or a and b j (kj )51. The critical
modes correspond to the eigenvaluesl11(ks) andl21(ka).
Note also that

ŝ15
Ŝ11Ŝ2

2
, ŝ25

Ŝ12Ŝ2

2bs
,

ŝ35
Â11Â2

2
, ŝ452

Â12Â2

2ba
. ~16!

After diagonalization of the linear evolution matrix, th
dynamics~6! may be rewritten, in Fourier space, as

] tŜ~kW !5L̂~kW !Ŝ~kW !1N̂2~ŜuŜ!ukW1N̂3~ŜuŜuŜ!ukW , ~17!

where Ŝ5(Ŝ1 ,Ŝ2 ,Â1 ,Â2)T and L̂ is a diagonal matrix
with diagonal elements$l11 ,l12 ,l21 ,l22%. N̂2ukW and
N̂3ukW are the Fourier transforms of the nonlinear terms of E
~6!, where thes i have been replaced by the correspond
linear combinations ofS1 , S2 , A1 , and A2 . Slightly
above threshold, this dynamics may be reduced to the
namics of the critical modes amplitudes only, through
adiabatic elimination of the stable noncritical modes. T
procedure is now standard@14#, and we will only sketch here
the main steps of its application to model~6!, and derive
evolution equations for the critical modes, up to cubic no
linearities.

Let us write the amplitudes of the critical modes
S(kW )[Ŝ1(kW )d(ukW u2ks) andA(kW )[Â1(kW )d(ukW u2ka). Their
dynamics writes

Ṡ~kW !5~2I s21!S~kW !1~N̂2ukW ,k5ks
!S1~N̂3ukW ,k5ks

!S ,

Ȧ~kW !5~2I s21!A~kW !1~N̂2ukW ,k5ka
!A1~N̂3ukW ,k5ka

!A .
~18!

The terms in the quadratic nonlinearitiesN̂2 are convolutions
of products of critical and noncritical modes. The terms
volving noncritical modes only (Ŝ2

2 ,Â2
2 ,Ŝ2Â2) may be ne-
04662
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glected, since they contribute, through the adiabatic elimi
tion process, to nonlinearities of quartic or higher ord
Furthermore, the structure of the cubic nonlinearities of E
~6! is such that the pure critical mode contribution toN̂3

vanishes. HenceN̂3 will be neglected. We are thus dealin
here with a nongeneric case, where cubic nonlinearities
generated solely by the adiabatic elimination of stable mo
from quadratic terms. The nonlinearities (N̂2ukW ,k5ks

)S and

(N̂2ukW ,k5ks
)A can be written at the lowest order in noncritic

modes as

~N̂2ukW ,k5ks
!S.

I s

2E dkW8@S~kW2kW8!S~kW8!2A~kW2kW8!A~kW8!

12S~kW2kW8!Ŝ2~kW8!d~ ukW8u2ks!

22A~kW2kW8!Â2~kW8!d~ ukW8u2ka!#

1I s$S~kW !@Ŝ1~0!1Ŝ2~0!#1S~2kW !

3@Ŝ1~2kW !1Ŝ2~2kW !#%,

~N̂2ukW ,k5ka
!A.I sE dkW8@S~kW2kW8!A~kW8!

1S~kW2kW8!Â2~kW8!d~ ukW8u2ka!

1A~kW2kW8!Ŝ2~kW8!d~ ukW8u2ks!#

1I sA~kW !@Ŝ1~0!1Ŝ2~0!#. ~19!

The noncritical modesŜ6(0), Ŝ6(2kW s), Ŝ2(kW s), and
Â2(kWa) present in the Eqs.~19! may be expressed as a
expansion in powers of critical ones using the adiaba
elimination procedure. One has at the leading order

Ŝ6~0!5
I s

2l1,6~0!
E dkW$A~kW !A~2kW !1@172bs~0!#

3S~kW !S~2kW !%,

Ŝ6~2kW s!5
I s

2l1,6~2ks!
@172bs~2ks!#S~kW s!S~kW s!,

Ŝ2~kW s!5
I s

2l1,2~ks!
E dkW8@3S~kW s2kW8!S~kW8!

1A~kW s2kW8!A~kW8!#,

Â2~kWa!52
I s

l2,2~ka!
E dkW8S~kWa2kW8!A~kW8!. ~20!

The substitution of Eqs.~20! in Eqs.~19! leads to the follow-
ing asymptotic dynamics for the critical modes, valid clo
to the instability threshold
0-4
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PATTERNS ARISING FROM THE INTERACTION . . . PHYSICAL REVIEW E65 046620
Ṡ~kW !5~2I s21!S~kW !1E dkW8@v0S~kW2kW8!S~kW8!

1v1A~kW2kW8!A~kW8!#2E dkW8E dkW9u~kW ,kW8,kW9!

3S~kW2kW8!S~kW82kW9!S~kW9!

2E dkW8E dkW9w~kW ,kW8,kW9!

3S~kW2kW8!A~kW82kW9!A~kW9!,

Ȧ~kW !5~2I s21!A~kW !1v2E dkW8S~kW2kW8!A~kW8!

2E dkW8E dkW9w̄~kW ,kW8,kW9!A~kW2kW8!A~kW82kW9!A~kW9!

2E dkW8E dkW9ū~kW ,kW8,kW9!A~kW2kW8!S~kW82kW9!S~kW9!,

~21!

wherev052v15v2/25I s/2, and

u~kW ,kW8,kW9!5u1d~ ukW8u2ks!1u2d~kW8!1u3d~kW8!d~kW92kW !

w~kW ,kW8,kW9!5w1d~ ukW8u2ks!1w2d~kW8!

1w3d~ ukW2kW82kW9u2ka!,

ū~kW ,kW8,kW9!5u1d~ ukW8u2ks!1u2d~kW8!2w3d~ ukW2kW8u2ka!

w̄~kW ,kW8,kW9!5w1d~ ukW8u2ks!1w2d~kW8!, ~22!

with u153I s
2/(214I s), u25I s

2(312uuu)/(21uuu)2, u35

2@ I s
2/9(1316uuu)#/@(21uuu)2#, w15w35I s

2/(214I s), and
w25I s

2/(21uuu)2. It has to be noted that theu terms come
from quadratic resonances between critical and noncrit
symmetric modes, while thew terms come from quadrati
resonances between symmetric and antisymmetric mode
in the case of isolated Turing-like instabilities, there is
quadratic resonance between critical antisymmetric mo
only. As a result, pattern formation is expected to stron
depend on the existence of quadratic resonances betw
symmetric and antisymmetric modes. Hence, for the sak
simplicity, we will consider separately the case with qu
dratic resonance between symmetric modes only, and
case with quadratic couplings between antisymmetric
symmetric modes, which is more intricate. In the latter ca
quadratic couplings are such thatkW15kW21kW3, with ukW1u5ks

and ukW2,3u5ka . Since cosf5ks/2ka , wheref is the angle
between symmetric and antisymmetric vectors, quadr
resonance arise only foruuu.4I s/3.

IV. PATTERN SELECTION AND STABILITY

In this section we study the various patterns that m
appear as asymptotic solutions of Eq.~21!, and their stability.
Each of these patterns is built on an arbitrary number
04662
al

As

es
y
en

of
-
he
d

e,

ic

y

f

critical modes pairs, and it is the nature of their nonline
couplings that determines their stability. In the following, w
label the modes contributing to the formation of a patte
S(kW i)5Si , A(kW i)5Ai . We also use the notationS̄i for the
complex conjugate ofSi .

A. kaËksÕ2 or zuzË4I sÕ3

In this case, there is no quadratic coupling between sy
metric and antisymmetric modes, and there is no contribu
coming from the terms with the coefficientsv1 , v2 , w1, and
w3. Let us then consider separately amplitude equations
each type of modes.

1. Antisymmetric modes

For patterns built on antisymmetric modes only, the a
plitude equations for an arbitrary numberm of pairs of
modes are

Ȧi5~2I s21!Ai22w2Ai (
j 51

m

uAj u2. ~23!

Hence, a pattern built onm pairs of wave vectors is margin
ally stable versus am11 pair of wave vectors. So, at thi
level of analysis, any pattern with an arbitrary number
wave vectors is possible, including patterns of the fo
AJ0(kar ), whereJ0 is zeroth order Bessel function andA
5A(2I s21)/2w2.

The linear growth rate of the evolution of symmetr
modes in the presence of such patterns is zero, so antis
metric patterns are marginally stable versus symmetric m
patterns. It would be necessary to go to higher orders in
amplitude equations to complete the pattern selection an
sis in this case.

2. Symmetric modes

On the other hand, for patterns built on symmetric mod
only, the amplitude equations for a triplet of such modes a

Ṡi5~2I s21!Si12v0S̄i 11S̄i 212~2u21u3!uSi u2Si

22~u11u2!Si(
j Þ i

uSj u2. ~24!

At the instability threshold (I s5
1
2 ), hexagonal pattern appea

via a subcritical bifurcation. Increasing the value ofI s ,
stripes may also become stable for 2I s21>@8(3
12uuu)#/@9(21uuu)2#. There is a small region of bistability
of stripes and hexagons and for larger values ofI s only the
stripes remain stable.

Hexagonal patterns are stable versus antisymme
modes forI s<(1/2)@11(312uuu)/4(21uuu)2#. Hence, suf-
ficiently close to threshold, one may expect hexagonal p
terns. On increasingI s , such patterns should become u
stable.
0-5
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3. Mixed modes

The amplitude equations for mixed structures formed
triplets of symmetric modes and an arbitrary number of
tisymmetric modes are

Ṡi5~2I s21!Si12v0Si 11Si 212SiF ~2u21u3!uSi u2

12~u11u2!(
j 51

3

uSj u212w2(
l 51

m

uAl u2G ,

Ȧk5~2I s21!Ak2AkF2u2(
j 51

3

uSj u212w2(
l 51

m

uAl u2G .

~25!

However, these equations do not admit nontrivial stea
states. As a result, in these conditions, hexagonal or str
patterns of symmetric modes, and patterns built on an a
trary number of antisymmetric modes may be simultaneou
stable.

B. ksÕ2ËkaËks or zuzÌ4I sÕ3

In this case, quadratic resonances may occur betw
symmetric and antisymmetric modes, and one may now
pect contributions coming from thev1 , v2 , w1, andw3 in
the amplitude equations, which have to be modified acco
ingly. Let us then consider the different types of patterns t
may arise in this case, and which are built on modes belo
ing to the following set of critical modes~up to an arbitrary
phase angle! ~cf. Fig. 2!.

1. Symmetric modes

Striped and hexagonal symmetric mode patterns are
always unstable versus antisymmetric modes. This is du
the positive nonlinear renormalization induced by the

FIG. 2. Quadratically coupled symmetric and antisymme
modes with wave numbersks andka
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modes in the evolution equation for their resonantly coup
antisymmetric modes~this renormalization is associated
the terms with2w3 coefficients inū).

2. Antisymmetric modes

As in Sec. IV A, a pattern built onm arbitrary pairs of
antisymmetric modes is marginally stable versus a pat
with m11 pairs of wave vectors. Furthermore, since t
contributions of the quadratically resonant symmetric a
antisymmetric modes, in their respective amplitude equati
have opposite signs (v1,0 andv2.0), pure antisymmetric
mode patterns are also unstable versus resonantly cou
symmetric and antisymmetric ones. Recall also that a pat
built on m arbitrary pairs of antisymmetric modes is margi
ally stable versus nonresonant symmetric modes.

3. Mixed modes

As a result, when quadratic resonances between sym
ric and antisymmetric modes are possible, pure steady
terns built on symmetric or antisymmetric modes only, a
always unstable. We have thus to consider the possibility
the system to develop mixed mode patterns.

Let us consider the simplest case of mixed mode patte
built on one symmetric mode and two quadratically reson
antisymmetric modes~e.g.,S1 , A1, andB1 in Fig. 2!. Their
uniform amplitude equations are

Ṡ15~2I s21!S12I sA1B12S1@~2u21u3!uS1u2

12w2~ uA1u21uB1u2!#,

Ȧ15~2I s21!A11I sS1B̄12A1@2~u22w3!uS1u2

1~2w2uA1u21~2w21w1!uB1u2!#,

Ḃ15~2I s21!B11I sS1Ā12B1@2~u22w3!uS1u2

1~2w2uB1u21~2w21w1!uA1u2!#. ~26!

Because of the symmetry betweenA1 and B1 we look for
solutions with the same amplitude for both antisymmet
modes. Defining amplitude and phase variables asS1

5Rsexpif, A15Raexpic, B15Raexpic̄, and C5f2c

2c̄, one has

Ṙs5~2I s21!Rs2I sRa
2cosC2Rs@~2u21u3!Rs

214w2Ra
2#,

Ṙa5~2I s21!Ra1I sRaRscosC2Ra@2~u22w3!Rs
2

1~4w212w1!Ra
2#,

Ċ5
I s

Rs
@Ra

222Rs
2#sinC. ~27!

A phase stable steady state corresponds thus toC52np if
Ra

2,2Rs
2 , and toC5(2n11)p if Ra

2.2Rs
2 . Combining the

steady state conditions forRs and Ra , it can be seen tha
C52np requires thatRa

2.Rs
2 and thatC5(2n11)p re-

quires thatRa
2,Rs

2 . As a result, a stable steady state m
only be obtained forC52np, with Rs

2,Ra
2,2Rs

2 . Further-
more, this condition is satisfied if the kinetic coefficients a
0-6
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such that 1<uuu,2(A321).1.46, which is thus a neces
sary condition to be satisfied to obtain such mixed mo
solutions. This condition corresponds to 0.57ks,ka
,0.65ks or 0.64,cosf,0.769, withI s.0.5.

A similar analysis may be performed for a pattern form
by an hexagonal planform of symmetric modes and th
quadratically resonant antisymmetric ones~cf. Fig. 2!. How-
ever, in this case, the fact that the quadratic couplings
tween symmetric and antisymmetric modes have oppo
signs does not allow the stabilization of critical patterns.

C. Summary of the analytical results

The conclusion of the analysis presented in the two p
ceding subsections is as follows.

For ka,0.5ks (uuu,0.666), close to threshold, hexagon
symmetric patterns are stable. For slightly larger values oI s
symmetric stripes and hexagons are bistable and finally o
the stripes remain stable. Patterns built on an arbitrary n
ber of antisymmetric modes are neutrally stable. As th
results come from an expansion up to cubic nonlinearities
cannot conclude about the stability of the antisymmetric p
terns. It would be necessary to go to higher order ter
Finally, there are no mixed stationary patterns.

For 0.5ks,ka,0.57ks (0.666,uuu,0.963), pure sym-
metric and antisymmetric mode patterns are unstable. A
no steady mixed mode patterns are found either. For
reason, one expects to find time dependent structures
involve both symmetric as well as antisymmetric modes.

For 0.57ks,ka,0.65ks (0.963,uuu,1.46), one may ex-
pect steady patterns formed by the superposition of one s
metric mode and its quadratically resonant antisymme
ones. We should notice that the range in which these ste
mixed patterns do exist may be in fact smaller than 0.9
,uuu,1.46 because these boundary values have been
tained as a necessary condition for the stability of the glo
phase. This is not a suficient condition to guarantee the
bility of the pattern, which can undergo other instabiliti
~despite the global phase being stable!. As we will see in the
following section, the approximate bounds obtained via
merical integration for this case are slightly different.

For 0.65ks<ka (1.46,uuu), symmetric modes are un
stable versus antisymmetric modes and no steady m
mode solutions are found. Patterns composed of an arbit
number of antisymmetric modes are neutrally stable, s
would be necessary to include higher order nonlinearitie
conclude about their stability.

The present analysis provides the basic elements for
study of pattern formation when both symmetric and an
symmetric modes become simultaneously unstable. As it
be discussed below, it is partially confirmed by numeri
analysis of the complete dynamical model. It could be i
proved, on the one hand, in determining the full stabil
range of mixed mode patterns, and, on the other hand
resolving the issue of finding asymptotic states in ca
where no steady critical patterns are found. In such case
suggested by numerical analysis, one should consider
possibility of asymptotic time-dependent or noncritical p
terns. The latter case would require to incorporate in
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dynamics harmonics or noncritical modes. We should no
that a peculiarity of the situation considered here is that th
are no cubic nonlinear terms involving only critical mode
The cubic nonlinearities we have considered are gener
solely by the adiabatic elimination of stable modes from
quadratic terms. However, for an input field that is sligh
above threshold there will be a range of unstable mo
around the critical one. The cubic nonlinearityN̂3 for these
modes will be small but nonzero. As the cubic nonlinearit
generated by the adiabatic elimination of stable modes fr
the quadratic terms are also small, it would be necessar
include in the analysis both kinds of cubic nonlinearitie
This is beyond the scope of the present paper.

V. NUMERICAL RESULTS

We have performed several numerical integrations of
~1! using a numerical scheme described in detail in Ref.@13#.
The method is pseudospectral and second-order accura
time, and is similar to the so-called two-step method. P
odic boundary conditions and lattices of size 1283128 were
used.

For uuu,0.666 there is not a mixed mode pattern sin
quadratic resonance is not possible due to the fact thaka
,ks/2. An example of this situation is shown in Fig. 3 fo
u520.5. According to the weakly nonlinear analysis, s

FIG. 3. Field configuration foru520.5 and I s50.51 (I 0

53.31) after integrating Eq.~1! for a time t535000. From left to

right and from top to bottom: Re@Ex(rW)# ~near field x̂-polarized
component plotted with the grayscale: black50.51, white50.60),

uEx(kW )u2 ~far field x̂ component!, Re@Ey(rW)# ~near fieldŷ-polarized
component plotted with the grayscale: black520.035, white

50.042), anduEy(kW )u2 ~far field ŷ component!.
0-7
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tionary symmetric hexagons are stable close to thresh
however, we find numerically a disordered structure for b
polarization components of the fieldEx and Ey . As Ex

5(E11E2)/A2 andEy5(E12E2)/A2i , the structure ob-
served inEx is formed by symmetric modes with wave ve
tors in the ringukW u5ks whereas the structure inEy is com-
posed of antisymmetric modes with wave vectorsukW u5ka .
The overall structure is built on an arbitrary number of sy
metric and antisymmetric modes. The weakly nonline
analysis predicted that there were no stationary mixed
terns and, in fact, the pattern shown in Fig. 3 from numeri
integration is not static, it evolves dynamically in a slow tim
scale.

For 0.666,uuu,0.963, although resonance is possible,
mixed mode pattern is numerically found, as predicted a
lytically. As in the previous case, a disordered structure
obtained and no steady pattern is reached even for long
integrations. Rings of radiusks andka in the far fields of the
linearly polarized componentsx̂ and ŷ respectively, show
that there is not a selection process of critical wave vect
all directions become unstable. In Fig. 4 we show the fi
configurations foru520.83.

The analysis of the preceding section showed that mi
mode patterns may be expected for 0.963,uuu,1.46. In
fact, for u521 a pattern formed by the superposition of
symmetric mode and the quadratically resonant antisymm
ric ones is obtained, see Fig. 5. A roll pattern is seen in thx̂

FIG. 4. Field configuration foru520.83, I s50.51 (I 0

54.41), and an integration time oft565 000. From left to right and

from top to bottom: Re@Ex(rW)# ~grayscale: black50.44, white

50.51), uEx(kW )u2, Re@Ey(rW)# ~grayscale: black520.036, white

50.033), anduEy(kW )u2.
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linearly polarized component with wave numberks , while a
rectangular pattern appears in theŷ component with wave
numberka . As for the range of existence of mixed mod
patterns, we have found numerically the existence of th
patterns also foru521.05, but not foruuu>1.1.

For u521.1 we find a steady pattern in which the sym
metric modes are damped and a stripe pattern with w
number ka appears in theŷ-polarized component, while
x-polarized component is almost homogeneous~in fact, a
small amplitude stripe pattern of wave vector 2ka is ob-
served inEx , which comes from the coupling betweenEx
and Ey). This pattern made out of antisymmetric modes
the same pattern that is formed when only the antisymme
instability is present. Overall, the electric field displays
elliptically polarized spatial structure. Similar stationary pa
terns are found for larger absolute values of the detuning
Fig. 6 we show the case withu522; this value was chosen
in order to induce the formation of a square pattern, since
anglef between symmetric and antisymmetric vectors isf
545° in this case, but anyway the antisymmetric stripe p
tern is formed as described.

VI. CONCLUDING REMARKS

We have studied the spatial polarization structures i
mean field model for a Kerr medium close to a two-phot
resonance and driven by a linearlyx̂-polarized field with

FIG. 5. Field configuration foru521, I s50.51 (I 055.06), and
an integration time oft514 000. From left to right and from top to

bottom: Re@Ex(rW)# ~grayscale: black50.43, white50.47),

uEx(kW )u2, Re@Ey(rW)# ~grayscale: black520.047, white50.047),

and uEy(kW )u2.
0-8
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negative detuning. In the self-focusing case the first pat
that is formed as the pump intensity is increased arises f
the competition between two stationary instabilities that
cur simultaneously. This codimension two bifurcation a
pears naturally in the system and it is a consequence o

FIG. 6. Field configuration foru522, I s50.51 (I 0510.2), and
an integration time oft510 000. From left to right and from top to

bottom: Re@Ex(rW)# ~grayscale: black50.32, white50.34),

uEx(kW )u2, Re@Ey(rW)# ~grayscale: black520.15, white50.15), and

uEy(kW )u2.
o,

h,

ys
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form of the nonlinearities associated to the two-photo
resonant four-wave mixing process. As this codimension t
bifurcation is not the result of the finetuning of two param
eters, as it is usually the case, it should be much more sim
to be observed. In fact, there is only one parameter,
pump, which has to be tuned. Furthermore, we still ha
another free parameter, the detuning, which allows the s
tem to form different patterns without changing the distan
to the codimension two instability threshold.

Near the instability threshold, we have obtained the e
lution equation for the patterns arising from the interacti
instabilities using a weakly nonlinear analysis. From the
analysis and from the numerical integration of the model
have shown that we can have the following patterns:~a! dy-
namical structures involving an arbitrary number of symm
ric and antisymmetric modes,~b! a steady state patter
formed by the superposition of a symmetric mode and
quadratically resonant antisymmetric ones, and~c! an anti-
symmetric stripe steady pattern inEy , which is the same tha
would appear if only the antisymmetric instability we
present.

As a final remark we notice that an interesting peculiar
of the situation considered here is that the selection am
these patterns can be done in a very natural way, tha
changing the value of the detuning.
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