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We study pattern formation associated with the polarization degree of freedom of the electric field amplitude
in a mean field model describing a nonlinear Kerr medium close to a two-photon resonance, placed inside a
ring cavity with flat mirrors and driven by a coherenpolarized plane-wave field. In the self-focusing case,
for negative detunings the pattern arises naturally from a codimension two bifurcation. For a critical value of
the field intensity there are two wave numbers that become unstable simultaneously, corresponding to two
Turing-like instabilities. Considered alone, one of the instabilities would originate a linearly polarized hexago-
nal pattern whereas the other instability is of pure vectorial origin and would give rise to an elliptically
polarized stripe pattern. We show that the competition between the two wave numbers can originate different
structures, the detuning being a natural selection parameter.
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[. INTRODUCTION cavity. Two-photon processes have been studied in propaga-
tion in nonlinear Kerr media without any cavity as a way to
Spatiotemporal patterns in the transverse direction of amealize optical phase conjugation mirrors. An ideal phase
optical field have now been widely studied theoretically andconjugate mirror should generate an output field such that the
experimentallf 1]. Studies of optical pattern formation share amplitude of the field, its propagation vector, and its polar-
a number of aspects and techniques with general investigazation unit vector are the complex conjugates of the corre-
tions of pattern formation in other physical systef2§ but  sponding magnitudes in the input field. The first two proper-
they also have specific features such as the role of light difties can be achieved easily using, for example, four-wave
fraction and the vectorial degree of freedom associated witimixing processe$8]. Usually the third property can be ob-
the polarization of the light electric field amplitude. A proto- tained only when the pump waves are circularly polarized
type simple model that has been very useful for the underand counterrotating. In order to find a system that verifies the
standing of pattern formation in nonlinear optical cavities isthree propertiegsvector phase conjugatiprior an arbitrarily
a mean field model describing a Kerr medium in a cavitypolarized input field it is required to make use of the special
with flat mirrors and driven by a coherent plane-wave fieldtensor properties of two-photon atomic transitions in degen-
[3,4]. This model was extended to take into account the poerate four-wave mixing process¢9,10|. More precisely,
larization degrees of freedom in Ref&-7]. Some of the vector phase conjugation can be achieved if the two levels
basic polarization mechanisms of pattern formation in alkalicoupled by the two-photon transition have equal angular mo-
vapors or other nonlinear materials can be understood imentaJ with J=0 orJ=1/2. In this situation the;1,, cOm-
terms of this simple model despite the fact that the model iponent of the susceptibility tensor vanishes. Intuitively, as
too simple to give a complete description of alkali vapors.AJ=0, the atom does not change its angular momentum
Furthermore, the relative simplicity of the model in RgF]  either by absorbing two pump photons or by emitting a probe
makes it worthwhile to study it in depth as a general proto-and a conjugate photon so that the conjugate photon must be
type model for the basic understanding of vectorial patternsemitted with angular momentum equal and opposite to that
A first study was undertaken in Rd6] for the case of lin- of the probe photon. A detailed calculati¢@] shows that
early polarized driving field and the positive cavity detuning.indeed this is true for the cases indicated before. We should
A more detailed study in which the case of elliptically polar- stress that the polarization properties of two-photon-resonant
ized driving field is also considered has been presented idegenerate four-wave mixing processes are different from
Ref. [7]. those of most other degenerate four-wave mixing processes.
Here we study vectorial pattern formation in a Kerr me-In the two-photon case the underlying physical mechanism is
dium close to a two-photon resonance placed inside a ringcattering of the probe field from a spatially uniform tempo-
rally varying coherence induced by the two pump waves
whereas in the other cases it is scattering from a spatially
*Electronic address: http://www.imedea.uib.es/PhysDept/ varying refractive-index distribution induced by the interfer-
"Mailing address: Center for Nonlinear Phenomena and Compleence between the pump and the probe beams. Experimen-
Systems, Universitéibre de Bruxelles, Campus Plaine, Blv. du tally, vector phase conjugation was first observed using the
Triomphe B.P 231, 1050 Bruxelles, Belgium. 3S,/,—6S;» two-photon transition in sodium vapgt1].
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Here, instead of a cavityless Kerr medium, we are consid- 2.0 o[ ' '
ering a Kerr mediumnsidea ring cavity. The same kind of 0.8
Kerr medium is used, namely, the medium has a susceptibil-
ity tensor such thaj;1,,=0, close to a two-photon reso-
nance. We will show that in this situation, when the cavity is
illuminated with linearly polarized input and with negative 1.0
detuning a new interesting situation appears: a codimension
two bifurcation in which two stationary Turing-like instabili-
ties occur simultaneously. The first instability, if the other 1°05 .
were not present, would originate a hexagonal pattern that is I
polarized linearly in the same direction as the input field. The 0.0 :
second instability is of pure vectorial origin and if the first 0 5 3 4
instability were not present it would give rise to an ellipti- o ak? ak?
cally polarized stripe pattern. Here we study the interplay
between the two instabilities. The codimension two bifurca-  FIG. 1. Marginal stability curves for a linearly polarized input
tion appears here in a natural way associated to the twdield _corresponding to the symmetric so_lutic_nn. In the inset the sym-
photon-resonant four-wave mixing nonlinearities rather thafletric steady state homogeneous solution is shown, as a function of
as the result of the finetuning of two system parameters asﬁe |n.put field intensity, for linearly pqlarlzeq light. Value of the
usually the case. The intensity of the pump field is the singlé!€!uningé=—1. The parameters used in Ha) in order to get the
control parameter to be tuned to change the distance to grigdimension two situation arg=1, a=1, A=0, andB=2. The
. e f . quantities plotted in all the figures are dimensionless.
instabilities. Furthermore, the system still has another easng
accessible control parameter, the detuning, which allows the ) i
system to form different patterns while remaining at theWhereEo represents the components of the input figthe
same distance from the codimension two instability threshfight and left circularly polarized components are equal since
old. In particular, we show how the detuning can be used awe considerx linearly polarized input »=+1(—1) indi-

a tuning parameter to select the pattern. cates self-focusingself-defocusing 6 is the cavity detun-

The outline of this paper is as follows. In Sec. Il we ing, a represents the strength of diffraction aRd is the
describe the model we are considering, its spatially homogefansverse Laplacian. The paramet&randB are related to
neous solution, and the stability analysis of this solution. Inthe nonlinear susceptibility tensor components in the follow-
Sec. lll, using a weakly nonlinear analysis, we derive theng way.A=6y112>andB=6y1,,1[8]. Also, for an isotropic
evolution equation for the patterns arising from the interactimedium we haveA+B/2=1. As discussed in the introduc-
ing instabilities. From these equations, the selected patterrion, here we are considering two-photon transitions between
for different values of the detuning are analyzed in Sec. IVlevels with equal angular momeniavhereJ=0 or J=1/2,

In Sec. V we describe the results from numerical simulationso thaty,;,,=0 (A=0 andB=2). Also as we consider the
of the model and finally in Sec. VI we give some concludingself-focusing situation, in what follows we takg=+1. The

1.5

8
wi—‘————_—

remarks. intensity of the input field id,=2|Ey|2.
The steady state homogeneous solutions of @&y.are
Il. DESCRIPTION OF THE MODEL, REFERENCE reference states from which transverse patterns emerge as
STEADY STATES, AND STABILITY ANALYSIS they become unstable. There is a symmetifi, (=Eg_

The system we consider is a ring cavity filled with an ._ES) and two asymm_etrlclisﬁﬁEs,) homogene(_)us solu-

: . : L ~  tions[7]. The symmetric solution corresponds to linearly po-
isotropic Kerr medium. The cavity is driven by an exterRal |arized output light, while the asymmetric solutions to ellip-
polarized input field. The situation in which the polar|zat|ontica||y polarized output. Increasing the input field, the
d_egree of freedom of the electromagnetic field is frozen Wagsymmetric solutions appear only for valued gfarger than
first considered by Lugiato and Lefevi3,4]. Geddeset al. e instability threshold for pattern formatigfi], so here we

[5] generalized the model of Rdf3] to allow for the vector | only consider the symmetric solutiofi2],
nature of the field. Their description of this system is given

by a pair of coupled equations for the evolution of the two

circularly polarized components of the field envel@eand lo/2=1{1+(21s— 6)?], 2
E_, defined by
1 which gives an implicit formula fol;=|Eg?. As is well
E.=—(Ex*iE,). known, Eq.(2) implies bistability foro> /3. However, here
\/E we will always consider negative detunings that are far away

from the bistable regime. An example of the symmetric so-

For an isotropic medium, the equations are lution for linearly polarized input is given in the inset of

JE. . ) ) Fig. 1.
o~ (A+infE.+ iaV?E. +Eo+in[AlE.|? Basic features of the stability of the steady state homoge-
neous symmetric solution can be analyzed by considering the
+(A+B)|E+|?]E-, (1)  evolution equations for perturbations. defined by
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Et:ES(l'f' lﬂt) (3) 20’30’4_20'10'2

From Egs.(1) and (3) we find Ny(S[S) =1, 30101+ 020,— 0303040, (12)
20'20'3_20'10'4

dpe=—[1+i(6-21)—iaV3]y.

Fil (5 + A+ D) (L4 a). @ g

It is convenient to make a change of variables to the fol-
J Na(2[3]3)

lowing basis[5]:
2 - + - +
S~ (04,09.0,00 =[Re(h. + ). 010304— 02(0101+ 020,— 0303+ 040,)

—20103— 20504

|m(lﬁ++lﬂ,), R€(¢+_¢—)a |m(¢+—¢7)]T, (5) _E 20'10'20'3_0'4(0'10'1_0'20'2+0'30'3+0'40'4)

03(— 0101+ 0205+ 0303+ 040,4)— 2010204

01(0101F 0205+ 0303— 040,4) — 202030,

whereT stands for transpose. In this basis, which emphasizes
the role of symmetric ¢, = _) and antisymmetric , = (13
—_) modes, Eq(4) may be written as
The structure of these terms also gives some general infor-
32 =L +Ny(2|2)+N32|2|2), (6)  mation on the nature of the instabilities. In particular, if the
quadratic nonlinearitjN,(X|%) does not vanish, one expects
where the linear matrit. is a matrix with 2<2 blocks in  the formation of a hexagonal pattern instead of stripes. As
which the symmetric ¢, o,) and antisymmetricds, o,) explained in Ref[7], when the symmetric mode becomes

modes are decoupled, unstable an hexagonal pattern is expected whereas when the
antisymmetric mode becomes unstable there are no relevant
L, O quadratic couplings so a stripe pattern is formed.
“lo L, () In Fig. 1 we plot marginal stability curves fe\=—1 as a

function ofak?. The shape of the marginal stability curves is,
As a consequence, the linear instabilities lead to the growtin fact, the same for any value of the detunifig This is
of either a symmetric or an antisymmetric mode. In Fourierbecause the eigenvaluas given by Eq.(11) depend on
space we have ak®—| 6|, so a change in the value @f is equivalent to a
displacement of the origin aik? by the same amount. The

-1 (0—215+ak?) origin moves to the right if the detuning is increased.
L= —(6—6l.+akd) -1 ®) The instability region | comes from the eigenvalug, so
the critical modes are symmetric and of zero frequency. A
and subcritical hexagonal pattern is expected via a transcritical
bifurcation. If this were the only instability, it would corre-
-1 (0—214+ak?) spond to the case discussed in Rédfl, in which the polar-
L2=( — (6421 +ak?) 1 ) (9)  ization degree of freedom is not taken into account. This
s instability leads to anx-polarized pattern while the
Wherekz||2|_ Q—polarized component of the field continues to be zero.
Instability occurs if at least one of the eigenvaluesf L ; The instability region Il comes from the eigenvalng,
andL, has a positive real part. In Fourier space, these eiger0 the critical modes are antisymmetric and of zero fre-
values are solutions of the characteristic equations: quency. A stripe pattern is expectg]. Given the antisym-
metric nature of the unstable mode, th@olarized compo-
(A1 +1)%+(6+ak’—6l)(6+ak’~215)=0, nent of the field is stable and remains almost homogeneous,

) ) ) B while the stripe pattern appears in tiiepolarized compo-
(At 1)+ (0+ak’+2l5)(0+ak —219=0. (100  pent, which has zero value below the instability. Overall, the
electric field displays an elliptically polarized spatial struc-
ture. We remark that such an instability is of pure vectorial
nature with no analog when the polarization degree of free-
dom is frozen.
In the case considered hergs=0, starting from the lin-
Ao =—1+4l2—a%(k®—kj5)?, (1))  early polarized homogeneous solution, as the input field is
increased, the system crosses the two instability thresholds
where ak?=41,+|6| and ak=|6|. For both eigenvalues, simultaneously. This is a codimension two bifurcation in-

For 6<0, we have

Nie=—1=41Z-a%(k?—k))?,

the instability occurs ats=1/2. volving two sets of stationary modes. The critical modes
The nonlinearities in Eq(6) include quadratidN,(>[2) associated to region | are symmetric and have a critical wave
and cubic termN; (2|3 |2): numberks, while the critical modes associated to region Il
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are antisymmetric and have a critical wave numkger The  glected, since they contribute, through the adiabatic elimina-

ratio k, /ks can be changed easily varying the valuefof tion process, to nonlinearities of quartic or higher order.
Furthermore, the structure of the cubic nonlinearities of Eq.
Ill. WEAKLY NONLINEAR ANALYSIS FOR (6) is such that the pure critical mode contribution g
INTERACTING TURING INSTABILITIES vanishes. Hencél; will be neglected. We are thus dealing

here with a nongeneric case, where cubic nonlinearities are
generated solely by the adiabatic elimination of stable modes

from quadratic terms. The nonlinearitie&zd,g,k:ks)s and

The eigenmodes of the linear evolution mattixare, in
Fourier  space [S.(k),0,00", [05_(k),0,0]",

[0,0A,(k),0]", and[0,0,0A_(k)]", with N
A oA " (N2||;,k:ks)A can be written at the lowest order in noncritical
A~ (K)=3(K)F Ba(K)oa(K), (14) |
S| - 2_5 L’ L/ AN L/ ’
where U(k)=7[U](k) denotes the Fourier transform of (Nalii-i)s ZJ dkTS(k=k")S(k) ~A(k—kDAK')

r). Furth L
U(r). Furthermore L 2S(R—KNS. (K 8(|K'| ko)

2l +a(k?—k?)

NCErerarar (19 —2AK=K")A_(K)5(|K'| ~ka)]
S J

+1{SK)[S,(0)+5_(0)]+S(—k
where index stands fors or a and gj(k;)=1. The critical S(SI0LS.(0) (O] +3(=k)
modes correspond to the eigenvaluags (ks) andX,, (k). X[5,(2k)+S_(2k) ]},
Note also that

Bi(k)=

G tS L STS (Nzlg,k:kan\:lsfdR'[suZ—lZ')A(lZ')
2 28,
. A+AL L AL-AL +S(k—K)A_(K') 8(|K'| —ka)
0'3: 2 y 0'4:_2—. (16) N -, -, -,
Pa +AK—K)S_(K)8(|k'|—ks)]
After diagonalization of the linear evolution matrix, the +ISA(E)[§+(0)+§,(0)]. (19)

dynamics(6) may be rewritten, in Fourier space, as

S(K)=A(K)S(K)+Nx(59)[c+ N385k, (17 The noncritical modes3.(0), 5.(2k), & (K), and

A A A A oa o ) _ A_(k,) present in the Eqs(19) may be expressed as an
_ T a.

Where _S_(S+ S-,A;,A-)" and A is a diagonal matrix oy hansion in powers of critical ones using the adiabatic
with diagonal elements{A1. ,\;- . A2. . A2-}. Nafg and  elimination procedure. One has at the leading order

Ns|¢ are the Fourier transforms of the nonlinear terms of Eq.

(6), where theo; have been replaced by the corresponding ls . R

linear combinations ofS,, S_, A,, and A_. Slightly Si(O)ZZ)\—(O)f dK{A(K)A(—K)+[152840)]
above threshold, this dynamics may be reduced to the dy- b

namics of the critical modes amplitudes only, through the % S(k)S(—K)},

adiabatic elimination of the stable noncritical modes. This
procedure is now standafl4], and we will only sketch here

the main steps of its application to modé), and derive 3. (2K) = 17282k 1S(Ko) S(Ky),
evolution equations for the critical modes, up to cubic non- =(2Ks) 2>\1,:(2ks)[ Bs(2ks) ISk S(ks)
linearities.

Let us write the amplitudes of the critical modes as o
S(K)=35. (K) (/K| ko) andA(K)=A., (K) 8(|K| —k,). Their S- (k)= o (k0 (ks>fd'<[35<" K)S(K)

dynamics writes

o L R +A(ks—k")A(K")],
S(k)=(21s—1)S(K) + (Na|g k=k ) st (Nalg k=k s

A(K)= (21— 1)A(|Z)+(Nzhz,k:ka)AJr(Nslﬁ,k:ka)A- A_(K)=— Jdk S(k,—KHAK). (20
(18) Ao (ka)

The terms in the quadratic nonlineariti&g are convolutions  The substitution of Eq<20) in Egs.(19) leads to the follow-
of prOdUCtS of critical and noncritical modes. The terms in- |ng asympto“c dynam|cs for the critical modes valid close

volving noncritical modes only$ A% S A ) may be ne- to the instability threshold
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N R R L R critical modes pairs, and it is the nature of their nonlinear
S(k)=(2ls— 1)S(k)+f dk'[voS(k—k")S(k") couplings that determines their stability. In the following, we
label the modes contributing to the formation_of a pattern
+v1A(IZ—IZ’)A(IZ’)]—f dIZ’j dRﬁu(E,E,’E”) S(k)=S, A(ki)=Ai. We also use the notatio® for the
complex conjugate o§; .

X S(k—k")S(k" —K")S(K")
A. k,<kd2 or |6|<4l 43

—f dl?’f dk"w(k,k’,K") In this case, there is no quadratic coupling between sym-
metric and antisymmetric modes, and there is no contribution
X S(K—K")A(K —K")A(K"), coming from the terms with the coefficienis, v,, w;, and

ws. Let us then consider separately amplitude equations for

A(K) = (21— 1)A(K) + vzf dk' S(k—K")AK') each type of modes.

1. Antisymmetric modes

—j dR’J dk'w(k,k’ K" A(K—K)AK' —K")AK") For patterns built on antisymmetric modes only, the am-
plitude equations for an arbitrary number of pairs of
. . L. L . modes are
—f dk’f dk"U(K,K" K" AK—K")S(K' —K")S(K"),
m
(22) A= (21~ 1A= 2wA S, A 23
wherevy=—v,=v,/2=142, and :
u(k,k’",k")=u18(|k'[—ks) +up8(k") +uzs(k") 8(K"—k) Hence, a pattern built om pairs of wave vectors is margin-
o - . ally stable versus an+1 pair of wave vectors. So, at this
w(k,k", k") =w; 8(|k'[ — k) +w, (k") level of analysis, any pattern with an arbitrary number of
. wave vectors is possible, including patterns of the form
+wsd([k—k'—K"|—ka), AJy(kar), whereJ, is zeroth order Bessel function ard

L Lo " " L = \/(ZI _1)/2\/\/2

(kK" k) =u1 (K[ —ks) + Uz 8(K") = W3 S(|k—k'| —ka) Theslinear growth rate of the evolution of symmetric
modes in the presence of such patterns is zero, so antisym-
metric patterns are marginally stable versus symmetric mode
patterns. It would be necessary to go to higher orders in the
amplitude equations to complete the pattern selection analy-
sis in this case.

WKk’ K"y =w,; 8(|K'| — kg) +Wo8(K'), (22

with u;=312/(2+4ly), u,=1%(3+2/6])/(2+16])?, uz=
—[12/9(13+6|6))1/[(2+]6])?], wy=wz=12/(2+4l), and
w,=12/(2+|6])2. It has to be noted that the terms come
from quadratic resonances between critical and noncritical
symmetric modes, while thes terms come from quadratic
resonances between symmetric and antisymmetric modes. As On the other hand, for patterns built on symmetric modes
in the case of isolated Turing-like instabilities, there is noonly, the amplitude equations for a triplet of such modes are:
guadratic resonance between critical antisymmetric modes
only. As a result, pattern formation is expected to strongly
depend on the existence of quadratic resonances between
symmetric and antisymmetric modes. Hence, for the sake of
simplicity, we will consider separately the case with qua- —2(u;+u)S Y |12 (24)
dratic resonance between symmetric modes only, and the 17

case with quadratic couplings between antisymmetric and

symmetric modes, which is more intEicat§. In the 1atter casept the instability thresholdl=3), hexagonal pattern appear
quadratic couplings are such tHat=k,+ ks, with |k;|=ks  via a subcritical bifurcation. Increasing the value kqf,
and |k, 4 =k,. Since cogh=ky2k,, where ¢ is the angle Stripes may also become stable forls21=[8(3
between symmetric and antisymmetric vectors, quadratic-2|6])1/[9(2+]6])%]. There is a small region of bistability

2. Symmetric modes

S=(21—1)S+200S+1S -1~ (2uy+U3)|S|2S

resonance arise only fog|>414/3. of stripes and hexagons and for larger values ,obnly the
stripes remain stable.
IV. PATTERN SELECTION AND STABILITY Hexagonal patterns are stable versus antisymmetric

modes forl < (1/2)[ 1+ (3+2|6|)/4(2+]6])?]. Hence, suf-
In this section we study the various patterns that mayficiently close to threshold, one may expect hexagonal pat-
appear as asymptotic solutions of E2(1), and their stability. terns. On increasinds, such patterns should become un-
Each of these patterns is built on an arbitrary number ostable.
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modes in the evolution equation for their resonantly coupled
antisymmetric modesthis renormalization is associated to

the terms with— w5 coefficients inu).

2. Antisymmetric modes

As in Sec. IV A, a pattern built om arbitrary pairs of
antisymmetric modes is marginally stable versus a pattern
with m+1 pairs of wave vectors. Furthermore, since the
contributions of the quadratically resonant symmetric and
antisymmetric modes, in their respective amplitude equations
have opposite sign (<0 andv,>0), pure antisymmetric
mode patterns are also unstable versus resonantly coupled
symmetric and antisymmetric ones. Recall also that a pattern
built on m arbitrary pairs of antisymmetric modes is margin-
ally stable versus nonresonant symmetric modes.

3. Mixed modes

As a result, when quadratic resonances between symmet-
ric and antisymmetric modes are possible, pure steady pat-
terns built on symmetric or antisymmetric modes only, are
always unstable. We have thus to consider the possibility for
the system to develop mixed mode patterns.

Let us consider the simplest case of mixed mode patterns
built on one symmetric mode and two quadratically resonant

The amplitude equations for mixed structures formed byantisymmetric modege.g.,S;, A;, andB; in Fig. 2). Their
triplets of symmetric modes and an arbitrary number of anyniform amplitude equations are

tisymmetric modes are . )
S1=(215—1)S;— 1 A1B1— Si[(2u,+u3) Sy

(2uy+uz)|S|? + 2w, (A2 +B4|9)],

3 m Ar= (21— 1)A;+1S,By— A [ 2(up— W3)| Sy |2

talurtug) 2, ISP+ awe2, AP, (2ol A2+ 20y wy) B[],
_ 3 m B1=(215—1)By+1S;A; —By[2(u,—wy)|S,|?
A= (21— 1)A—A, 2u2j§:‘,l |s,-|2+2w22,l |A2].
(25

FIG. 2. Quadratically coupled symmetric and antisymmetric
modes with wave numbels; andk,

3. Mixed modes

S=2ls—1)S+2005+1S5-1—S

+(2Wy|By| 2+ (2wy+wy) | Ag )], (26)

Because of the symmetry betwedn and B; we look for
However, these equations do not admit nontrivial steadyolutions with the same amplitude for both antisymmetric
states. As a result, in these conditions, hexagonal or stripeghodes. Defining amplitude and phase variables s
patterns of symmetric modes, and patterns built on an arbi= R exp$, A;=R,expiy, B;=Rqexpiy, and ¥=¢p—
trary number of antisymmetric modes may be simultaneousIL% one has

stable. ]
Rs=(2ls— 1)Rs— | RZcosW¥ — R (2u,+ u3) RZ+ 4w,Rz2],

B. ky2<ka<ks or [6]>41J3 R.= (21— 1)Ry+ I RyR.COSW — R,[ 2(Up— Ws) R2

In this case, quadratic resonances may occur between 5
symmetric and antisymmetric modes, and one may now ex- T (4Wp+2w)R7],
pect contributions coming from the;, v,, wq, andws in |
the amplitude equations, which have to be modified accord- s o P
ingly. Let us then consider the different types of patterns that V= ES[Ra_ZRS]S'nq,' @7
may arise in this case, and which are built on modes belong-
ing to the following set of critical mode@ip to an arbitrary A phase stable steady state corresponds thuk t®2nr if

phase angle(cf. Fig. 2. R2<2R?, and to¥ = (2n+ 1) if R2>2R2. Combining the
_ steady state conditions fd®; and R,, it can be seen that
1. Symmetric modes W =2n7 requires thatR2>R?2 and that¥ =(2n+1)= re-

Striped and hexagonal symmetric mode patterns are no@uires thatR;<RZ. As a result, a stable steady state may
always unstable versus antisymmetric modes. This is due tonly be obtained fol =2n, with RZ<R2<2RZ. Further-
the positive nonlinear renormalization induced by thesemore, this condition is satisfied if the kinetic coefficients are
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such that ¥|6|<2(y3—1)=1.46, which is thus a neces-
sary condition to be satisfied to obtain such mixed modes
solutions. This condition corresponds to &5%k,
<0.6%, or 0.64<c0s¢$<<0.769, withl ;=0.5.

A similar analysis may be performed for a pattern formed
by an hexagonal planform of symmetric modes and their
guadratically resonant antisymmetric oriek Fig. 2). How-
ever, in this case, the fact that the quadratic couplings be
tween symmetric and antisymmetric modes have oppositg
signs does not allow the stabilization of critical patterns.

C. Summary of the analytical results

The conclusion of the analysis presented in the two pre
ceding subsections is as follows.

Fork,<0.5, (|| <0.666), close to threshold, hexagonal
symmetric patterns are stable. For slightly larger values of
symmetric stripes and hexagons are bistable and finally onl
the stripes remain stable. Patterns built on an arbitrary num#
ber of antisymmetric modes are neutrally stable. As these
results come from an expansion up to cubic nonlinearities we
cannot conclude about the stability of the antisymmetric pat-
terns. It would be necessary to go to higher order terms.
Finally, there are no mixed stationary patterns.

For 0.%,<k,<0.5%k, (0.666<|6|<0.963), pure sym- _ _ _
metric and antisymmetric mode patterns are unstable. Also, FIG. 3. F_"3|d co_nflgurauon f0r0_=—0.5 and 1,=0.51 (4
no steady mixed mode patterns are found either. For that 3-31) after integrating Eq3) for a time t=35000. From left to
reason, one expects to find time dependent structures theght and from top to bottom: RE&,(r)] (near fieldx-polarized
involve both symmetric as well as antisymmetric modes. ~component plotted with the grayscale: bladk 51, white=0.60),

For 0.5k<k,<0.65 (0.963<| 6| <1.46), one may ex- |Ex(K)|? (far field x component ReE,(r)] (near fieldy-polarized
pect steady patterns formed by the superposition of one synfmponent plotted with the grayscale: black 0.035, white
metric mode and its quadratically resonant antisymmetric=0.042), andE,(k)|? (far fieldy component

ones. We should notice that the range in which these stead . . . .
mixed patterns do exist may be in fact smaller than Ol%%ynamms harmonics or noncritical modes. We should notice

<|6]<1.46 because these boundary values have been o lata pecg!iarity cl)_f the situatio_n coln_sidereclj her_e_ islthat(;here
tained as a necessary condition for the stability of the globafhe no g.u Ic nI(_)n inéar termshmvo ving %n y grmca modes. d
phase. This is not a suficient condition to guarantee the sta- e cubic nonlinearities we have considered are generate
bility of the pattern, which can undergo other instabilitiesSOIely by the adiabatic elimination of stable modes from the

- ; : : uadratic terms. However, for an input field that is slightly
(despite the global phase being stabkes we will see in the q .
following section, the approximate bounds obtained via nuabove threshold there will be a range of unstable modes

merical integration for this case are slightly different. around the critical one. The cubic nonlinearity for these
For 0.6%k.<k, (1.46<|6]), symmetric modes are un- modes will be small _but nonzero. As_, the cubic nonlinearities
stable versus antisymmetric modes and no steady mixegenerated by the adiabatic eI|m|nat|9n of stable modes from
mode solutions are found. Patterns composed of an arbitraff}e quadratic terms are also small, it would be necessary to
number of antisymmetric modes are neutrally stable, so itnc_lude in the analysis both kinds of cubic nonlinearities.
would be necessary to include higher order nonlinearities td Nis is beyond the scope of the present paper.
conclude about their stability.
The present analysis provides the basic elements for the V. NUMERICAL RESULTS
study of pattern formation when both symmetric and anti-
symmetric modes become simultaneously unstable. As it will We have performed several numerical integrations of Eq.
be discussed below, it is partially confirmed by numerical(1) using a numerical scheme described in detail in Reg].
analysis of the complete dynamical model. It could be im-The method is pseudospectral and second-order accurate in
proved, on the one hand, in determining the full stabilitytime, and is similar to the so-called two-step method. Peri-
range of mixed mode patterns, and, on the other hand, indic boundary conditions and lattices of size X288 were
resolving the issue of finding asymptotic states in casesised.
where no steady critical patterns are found. In such cases, as For |0|<0.666 there is not a mixed mode pattern since
suggested by numerical analysis, one should consider thguadratic resonance is not possible due to the factkhat
possibility of asymptotic time-dependent or noncritical pat-<k¢/2. An example of this situation is shown in Fig. 3 for
terns. The latter case would require to incorporate in theg=—0.5. According to the weakly nonlinear analysis, sta-
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FIG. 4. Field configuration for6=-0.83, 1s=0.51 (4 ) _ )
=4.41), and an integration time b 65 000. From left to right and FIG. 5. Field configuration fof= —1, Is=0.51 (,=5.06), and
from top to bottom: REE (F)] (grayscale: black0.44, white a0 integration time of=14 000. From left to right and from top to
: X : 44, R .
=0.51), |EX(IZ)|2, Re[Ey(F)] (grayscale: black —0.036, white bott(zm: R@Ex([)] (grayscale: black0.43, white=0.47),
=0.033), andE,(K)|2. [Ex(K)|?, REEy(r)] (grayscale: black —0.047, white=0.047),
/ and|E,(K)|2.

tionary symmetric hexagons are stable close to thresholq|i,nearly polarized component with wave number while a
however, we find numerically a disordered structure for both o "
polarization components of the fielfl, and E,. As E,  rectangular pattern appears in ecomponent with wave
=(E,+E)/\2 andEyz(E+—E,)/\/§i, the structure ob- numberk,. As for the range of_eX|stence o_f mixed mode
served inE, is formed by symmetric modes with wave vec- patterns, we have found numerically the existence of these

" the ringlFl =K. wh b E i patterns also fop=—1.05, but not fofg|=1.1.
tors in the ring|k| =k whereas the structure i, is com- For 9= —1.1 we find a steady pattern in which the sym-

posed of antisymmetric modes with wave vectts=K,.  metric modes are damped and a stripe pattern with wave

The overall structure is built on an arbitrary number of SYM-,umber k, appears in they-polarized component, while

metric and antisymmetric modes. The weakly nonllnearx_polarized component is almost homogenedins fact, a

?naly5|s dpr'edf|ctc;:dﬂ;that tt?ere vr\:ere no é;_tangr;ary mixed .paEmall amplitude stripe pattern of wave vectok,2is ob-
€rns and, in fact, e patiern SNown In =g. 3 from numericake o g inE,, which comes from the coupling betweé&n

|Snct§|g(]arat|on is not static, it evolves dynamically in a slow time andE,). This pattern made out of antisymmetric modes is
: the same pattern that is formed when only the antisymmetric

For 0.666< 6| <0.963, although resonance is possible, nOinstability is present. Overall, the electric field displays an

mixed mode pattern is numerically found, as predicted anaélliptically polarized spatial structure. Similar stationary pat-

lytically. As in the previous case, a disordered structure iﬁ
obtained and no steady pattern is reached even for long timlgig 6 we show the case with= — 2 this value was chosen
integrations. Rings of radiue; andk, in the far fields of the in order to induce the formation of a square pattern, since the

linearly polarized components andy respectively, show angle 4 between symmetric and antisymmetric vectorgis

that there is not a selection process of critical wave vectors. 45 in this case, but anyway the antisymmetric stripe pat-
all directions become unstable. In Fig. 4 we show the fielgern is formed as described.

configurations for6= —0.83.
The analysis of the preceding section showed that mixed
VI. CONCLUDING REMARKS
mode patterns may be expected for 0.868|<1.46. In
fact, for 6= —1 a pattern formed by the superposition of a We have studied the spatial polarization structures in a
symmetric mode and the quadratically resonant antisymmetean field model for a Kerr medium close to a two-photon

ric ones is obtained, see Fig. 5. A roll pattern is seen inxthe resonance and driven by a linearkypolarized field with

erns are found for larger absolute values of the detuning. In
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form of the nonlinearities associated to the two-photon-
resonant four-wave mixing process. As this codimension two
bifurcation is not the result of the finetuning of two param-
eters, as it is usually the case, it should be much more simple
to be observed. In fact, there is only one parameter, the
pump, which has to be tuned. Furthermore, we still have
another free parameter, the detuning, which allows the sys-
tem to form different patterns without changing the distance
to the codimension two instability threshold.

Near the instability threshold, we have obtained the evo-
lution equation for the patterns arising from the interacting
instabilities using a weakly nonlinear analysis. From these
analysis and from the numerical integration of the model we
have shown that we can have the following pattetasdy-
namical structures involving an arbitrary number of symmet-
ric and antisymmetric modedb) a steady state pattern
formed by the superposition of a symmetric mode and the
* guadratically resonant antisymmetric ones, &odan anti-
symmetric stripe steady patternk , which is the same that
would appear if only the antisymmetric instability were
present.

# As a final remark we notice that an interesting peculiarity
of the situation considered here is that the selection among
these patterns can be done in a very natural way, that is,
changing the value of the detuning.

W=
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